Advertisements
Advertisements
प्रश्न
cot2θ - tan2θ = cosec2θ - sec2θ
उत्तर
डावी बाजू = cot2θ - tan2θ
= `("cosec"^2θ - 1) - (sec^2θ - 1)` .......`[(∵ tan^2θ = sec^2θ - 1), (cot^2θ = "cosec"^2θ - 1)]`
= cosec2θ - 1 - sec2θ + 1
= cosec2θ - sec2θ
= उजवी बाजू
∴ cot2θ - tan2θ = cosec2θ - sec2θ
APPEARS IN
संबंधित प्रश्न
sinθ × cosecθ = किती?
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
sec θ(1 - sin θ) (sec θ + tan θ) = 1
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.