Advertisements
Advertisements
प्रश्न
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
उत्तर
डावी बाजू = sin θ (1 – tan θ) – cos θ (1 – cot θ)
= `sintheta (1 - (sintheta)/(costheta)) - costheta (1 - (costheta)/(sintheta))`
= `sintheta - (sin^2theta)/costheta - costheta + (cos^2theta)/sintheta`
= `sintheta + (cos^2theta)/sintheta - (sin^2theta)/costheta - costheta`
= `(sin^2theta + cos^2theta)/sintheta - ((sin^2theta + cos^2theta)/costheta)`
= `1/sintheta - 1/costheta` ......[∵ sin2θ + cos2θ = 1]
= cosec θ – sec θ
= उजवी बाजू
∴ sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
APPEARS IN
संबंधित प्रश्न
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
1 + tan2θ = किती?
sec6x - tan6x = 1 + 3sec2x × tan2x
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.