Advertisements
Advertisements
प्रश्न
sec6x - tan6x = 1 + 3sec2x × tan2x
उत्तर
डावी बाजू = sec6x - tan6x
= (sec2x)3 - tan6x
= (1 + tan2x)3 - tan6x ......[∵ 1 + tan2θ = sec2θ]
= 1 + 3tan2x + 3(tan2x)2 + (tan2x)3 - tan6x .....[∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]
= 1 + 3tan2x (1 + tan2x) + tan6x - tan6x
= 1 + 3tan2x sec2x ......[∵ 1 + tan2θ = sec2θ]
= उजवी बाजू
∴ sec6x - tan6x = 1 + 3sec2x × tan2x
APPEARS IN
संबंधित प्रश्न
(sec θ + tan θ) (1 - sin θ) = cos θ
cot2θ - tan2θ = cosec2θ - sec2θ
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.