Advertisements
Advertisements
प्रश्न
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
उत्तर
डावी बाजू = `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)`
= `1/("cosec" theta)(cottheta + tantheta)` .....`[(because tan(90 - theta) = cot theta),(cot(90 - theta) = tantheta)]`
= sin θ (cot θ + tan θ)
= `sintheta ((costheta)/(sintheta) + (sintheta)/(costheta))`
= `sintheta ((cos^2theta + sin^2theta)/(sintheta costheta))`
= `sintheta (1/(sintheta costheta))` ......[∵ sin2θ + cos2θ = 1]
= `1/costheta`
= sec θ
= उजवी बाजू
∴ `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
sec θ(1 - sin θ) (sec θ + tan θ) = 1
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.