Advertisements
Advertisements
प्रश्न
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
उत्तर
डावी बाजू = (sin A + cos A) (cosec A – sec A)
= (sin A + cos A) `(1/sin A - 1/cos A)`
= (cos A + sin A) `((cosA - sinA)/(sinA cosA))`
= `(cos^2A - sin^2A)/(sinA cosA)` ...........[(a + b)(a - b) = a2 - b2]
= `(1 - sin^2A - sin^2A)/(sin A cosA)` .....`[(sin^2A + cos^2A = 1), (therefore1 - sin^2A = cos^2A)]`
= `(1 - 2sin^2A)/(sinA cosA)`
= `(1/(sinA cosA) - (2sin^2A)/(sinA cosA))`
= `1/sinA . 1/cosA - (2sinA)/cosA`
= cosec A. sec A – 2tan A
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
sec θ(1 - sin θ) (sec θ + tan θ) = 1
tan4θ + tan2θ = sec4θ - sec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
जर 1 – cos2θ = `1/4`, तर θ = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
जर 3 sin θ = 4 cos θ, तर sec θ = ?
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.