Advertisements
Advertisements
प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
उत्तर
डावी बाजू = (sec θ - cos θ)(cot θ + tan θ)
= `(1/cos θ - cos θ) (cos θ/sin θ + sin θ/cos θ)`
= `((1 - cos^2θ)/cos θ)((cos^2θ + sin^2θ)/(sinθcosθ))`
= `sin^2θ/cosθ xx 1/(sinθcosθ)` ....`[(∵ sin^2θ + cos^2θ = 1),(∴ sin^2θ = 1 - cos^2θ)]`
= `sinθ/cosθ . 1/cosθ`
= tan θ . sec θ
= उजवी बाजू
∴ (sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
APPEARS IN
संबंधित प्रश्न
`1/(secθ - tanθ)` = secθ + tanθ
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ