Advertisements
Advertisements
प्रश्न
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
उत्तर
cosec A – sin A = p ......[दिलेले]
∴ `1/"sin A" - sin "A"` = p
∴ `(1 - sin^2"A")/"sin A"` = p
∴ `(cos^2"A")/"sin A"` = p ......`("i") [(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`
sec A – cos A = q ......[दिलेले]
∴ `1/"cos A" - cos "A"` = q
∴ `(1 - cos^2"A")/"cos A"` = q
∴ `(sin^2"A")/"cos A"` = q .....(ii) `[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
डावी बाजू = `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)`
= `[((cos^2"A")/(sin "A"))^2 ((sin^2"A")/(cos"A"))]^(2/3) + [((cos^2"A")/(sin "A"))((sin^2"A")/(cos"A"))^2]^(2/3)` ......[(i) आणि (ii) वरून]
= `((cos^4"A")/(sin^2"A") xx (sin^2"A")/(cos"A"))^(2/3) + ((cos^2"A")/(sin"A") xx (sin^4"A")/(cos^2"A"))^(2/3)`
= `(cos^3"A")^(2/3) + (sin^3"A")^(2/3)`
= cos2A + sin2A
= 1
= उजवी बाजू
∴ `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
APPEARS IN
संबंधित प्रश्न
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
sec θ(1 - sin θ) (sec θ + tan θ) = 1
cot2θ - tan2θ = cosec2θ - sec2θ
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ