Advertisements
Advertisements
Question
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Solution
cosec A – sin A = p ......[दिलेले]
∴ `1/"sin A" - sin "A"` = p
∴ `(1 - sin^2"A")/"sin A"` = p
∴ `(cos^2"A")/"sin A"` = p ......`("i") [(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`
sec A – cos A = q ......[दिलेले]
∴ `1/"cos A" - cos "A"` = q
∴ `(1 - cos^2"A")/"cos A"` = q
∴ `(sin^2"A")/"cos A"` = q .....(ii) `[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
डावी बाजू = `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)`
= `[((cos^2"A")/(sin "A"))^2 ((sin^2"A")/(cos"A"))]^(2/3) + [((cos^2"A")/(sin "A"))((sin^2"A")/(cos"A"))^2]^(2/3)` ......[(i) आणि (ii) वरून]
= `((cos^4"A")/(sin^2"A") xx (sin^2"A")/(cos"A"))^(2/3) + ((cos^2"A")/(sin"A") xx (sin^4"A")/(cos^2"A"))^(2/3)`
= `(cos^3"A")^(2/3) + (sin^3"A")^(2/3)`
= cos2A + sin2A
= 1
= उजवी बाजू
∴ `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
APPEARS IN
RELATED QUESTIONS
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
sinθ × cosecθ = किती?
cot2θ - tan2θ = cosec2θ - sec2θ
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.