Advertisements
Advertisements
Question
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
Solution
उजवी बाजू = `(sec^2"A")/("cosec"^2"A")`
= `(1 + tan^2"A")/(1 + cot^2"A")` .....`[(because 1 + tan^2"A" = sec^2"A"),(1 + cot^2"A" = "cosec"^2A")]`
= `(1 + (sin^2"A")/(cos^2"A"))/(1 + (cos^2"A")/(sin^2"A"))`
= `((cos^2"A" + sin^2"A")/(cos^2"A"))/((sin^2"A" + cos^2"A")/(sin^2"A"))`
= `(1/(cos^2"A"))/(1/(sin^2"A"))` .......[∵ sin2A + cos2A = 1]
= `(sin^2"A")/(cos^2"A")`
= tan2A
= tan A . tan A
= `"tan A"/"cot A"`
= डावी बाजू
∴ `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
APPEARS IN
RELATED QUESTIONS
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
cot θ + tan θ = cosec θ sec θ
sinθ × cosecθ = किती?
sec6x - tan6x = 1 + 3sec2x × tan2x
जर 3 sin θ = 4 cos θ, तर sec θ = ?
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
sin2θ + cos2θ ची किंमत काढा.
उकलः
Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` ...(पायथागोरसचे प्रमेय)
दोन्ही बाजूला AC2 ने भागून,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परंतु `"AB"/"AC" = square "आणि" "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`