Advertisements
Advertisements
Question
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
Solution
डावी बाजू = `(sintheta + "cosec" theta)/sin theta`
= `sintheta/sintheta + ("cosec"theta)/sintheta`
= 1 + cosec θ × cosec θ ......`[∵ "cosec" theta = 1/sin theta]`
= 1 + cosec2θ
= 1 + 1 + cot2θ .......[∵ 1 + cot2θ = cosec2θ]
= 2 + cot2θ
= उजवी बाजू
∴ `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
APPEARS IN
RELATED QUESTIONS
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
sec4A(1 - sin4A) - 2tan2A = 1
sec6x - tan6x = 1 + 3sec2x × tan2x
जर 1 – cos2θ = `1/4`, तर θ = ?
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ