Advertisements
Advertisements
Question
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
Solution
डावी बाजू = sec2θ – cos2θ
= sec2θ – (1 – sin2θ) ......`[(because sin^2theta + cos^2theta = 1),(therefore 1 - sin^2theta = cos^2theta)]`
= sec2θ – 1 + sin2θ
= tan2θ + sin2θ ......`[(because 1 + tan^2theta = sec^2theta),(therefore tan^2theta = sec^2theta - 1)]`
= उजवी बाजू
∴ sec2θ – cos2θ = tan2θ + sin2θ
APPEARS IN
RELATED QUESTIONS
`(sin^2θ)/(cosθ) + cosθ = secθ`
cos2θ(1 + tan2θ) = 1
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
cot2θ - tan2θ = cosec2θ - sec2θ
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
जर cos θ = `24/25`, तर sin θ = ?
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू