Advertisements
Advertisements
Question
जर cos θ = `24/25`, तर sin θ = ?
Solution
cos θ = `24/25` .............[दिलेले]
आपल्याला माहीत आहे, की,
sin2θ + cos2θ = 1
∴ `sin^2theta + (24/25)^2` = 1
∴ `sin^2theta + 576/625` = 1
∴ sin2θ = `1 - 576/625`
∴ sin2θ = `(625 - 576)/625`
∴ sin2θ = `49/625`
∴ sin θ = `7/25` ......[दोन्ही बाजूंची वर्गमुळे काढून]
APPEARS IN
RELATED QUESTIONS
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
1 + tan2θ = किती?
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
sec6x - tan6x = 1 + 3sec2x × tan2x
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.