Advertisements
Advertisements
Question
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
Solution
डावी बाजू = `tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2`
= `tanA/(sec^2A)^2 + cotA/(cosec^2A)^2` .........`[(∵ 1 + tan^2θ = sec^2θ), (∴ 1 + cot^2θ = cosec^2θ)]`
= `tanA/sec^4A + cotA/(cosec^4A)`
= `tanA xx 1/sec^4A + cotA xx 1/(cosec^4A)`
= `sinA/cosA xx cos^4A + cosA/sinA xx sin^4A`
= sin A cos3A + cos A sin3A
= sin A cos A(cos2A + sin2A)
= sin A cos A (1) ........[∵ sin2θ + cos2θ = 1]
= sin A cos A
= उजवी बाजू
∴ `tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
APPEARS IN
RELATED QUESTIONS
`(sin^2θ)/(cosθ) + cosθ = secθ`
cot θ + tan θ = cosec θ sec θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ