Advertisements
Advertisements
Question
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
Solution
sin6A + cos6A = (sin2A)3 + (cos2A)3
= (1 – cos2A)3 + (cos2A)3 ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" sin^2"A")]`
= 1 – 3 cos2A + 3(cos2A)2 – (cos2A)3 + cos6A ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A
= 1 – 3 cos2A sin2A
sin4A + cos4A = (sin2A)2 + (cos2A)2
= (1 – cos2A)2 + (cos2A)2
= 1 – 2 cos2A + (cos2A)2 + (cos2A)2 ......[∵ (a – b)2 = a2 – 2ab + b2]
= 1 – 2 cos2A + 2 cos4A
= 1 – 2 cos2A(1 – cos2A)
= 1 – 2 cos2A sin2A
डावी बाजू = 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1
= 2(1 – 3 cos2A sin2A) – 3(1 – 2 cos2A sin2A) + 1
= 2 – 6 cos2A sin2A – 3 + 6 cos2A sin2A + 1
= 0
= उजवी बाजू
∴ 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
APPEARS IN
RELATED QUESTIONS
secθ + tanθ = `cosθ/(1 - sinθ)`
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
sec θ(1 - sin θ) (sec θ + tan θ) = 1
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
जर 1 – cos2θ = `1/4`, तर θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.