Advertisements
Advertisements
Question
secθ + tanθ = `cosθ/(1 - sinθ)`
Solution
डावी बाजू = secθ + tanθ
= `1/cosθ + sinθ/cosθ`
= `(1 + sinθ)/cosθ`
= `(1 + sinθ)/(cosθ) xx (1 - sinθ)/(1 - sinθ)` ....[अंशाचे परिमेयकरण करून]
= `(1^2 - sin^2θ)/(cosθ(1 - sinθ)) = (1 - sin^2θ)/(cosθ(1 - sinθ))`
= `(cos^2θ)/(cosθ(1 - sinθ))` .....`[(∵ sin^2θ + cos^2θ = 1), (∴ 1 - sin^2θ = cos^2θ)]`
= `cosθ/(1 - sinθ)` = उजवी बाजू
∴ secθ + tanθ = `cosθ/(1 - sinθ)`
APPEARS IN
RELATED QUESTIONS
cos2θ(1 + tan2θ) = 1
sec4θ - cos4θ = 1 - 2cos2θ
(sec θ + tan θ) . (sec θ – tan θ) = ?
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.