Advertisements
Advertisements
Question
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
Solution
डावी बाजू = cot2θ – tan2θ
= (cosec2θ − 1) − (sec2θ − 1) ......`[(because tan^2theta = sec^2theta - 1),(cot^2theta = "cosec"^2 theta - 1)]`
= cosec2θ − 1 − sec2θ + 1
= cosec2θ − sec2θ
= उजवी बाजू
∴ cot2θ – tan2θ = cosec2θ – sec2θ
APPEARS IN
RELATED QUESTIONS
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
sec6x - tan6x = 1 + 3sec2x × tan2x
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू