Advertisements
Advertisements
प्रश्न
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
उत्तर
डावी बाजू = cot2θ – tan2θ
= (cosec2θ − 1) − (sec2θ − 1) ......`[(because tan^2theta = sec^2theta - 1),(cot^2theta = "cosec"^2 theta - 1)]`
= cosec2θ − 1 − sec2θ + 1
= cosec2θ − sec2θ
= उजवी बाजू
∴ cot2θ – tan2θ = cosec2θ – sec2θ
APPEARS IN
संबंधित प्रश्न
sinθ × cosecθ = किती?
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
जर cos θ = `24/25`, तर sin θ = ?
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू