Advertisements
Advertisements
प्रश्न
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
उत्तर
डावी बाजू = `(1 + sintheta)/(1 - sin theta)`
= `((1 + sintheta)/(costheta))/((1 - sintheta)/(costheta))` ......[अंशाला व छेदाला cos θ ने भागून]
= `(1/costheta + (sintheta)/(costheta))/(1/costheta - (sintheta)/(costheta)`
= `(sectheta + tantheta)/(sectheta - tantheta)`
= `(sectheta + tantheta)/(sectheta - tantheta) xx (sectheta + tantheta)/(sectheta + tantheta)` ......[छेदाचे परिमेयकरण करून]
= `(sectheta + tantheta)^2/(sec^2theta - tan^2theta)`
= `(sectheta + tantheta)^2/1` ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`
= (sec θ + tan θ)2
= उजवी बाजू
∴ `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
APPEARS IN
संबंधित प्रश्न
sec4θ - cos4θ = 1 - 2cos2θ
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
sin2θ + cos2θ ची किंमत काढा.
उकलः
Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` ...(पायथागोरसचे प्रमेय)
दोन्ही बाजूला AC2 ने भागून,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परंतु `"AB"/"AC" = square "आणि" "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`