Advertisements
Advertisements
प्रश्न
sec4θ - cos4θ = 1 - 2cos2θ
उत्तर
डावी बाजू = sec4θ - cos4θ
= (sec2θ)2 – (cos2θ)2
= (sec2θ + cos2θ) (sec2θ – cos2θ) ....[∵ a2 – b2 = (a + b)(a – b)]
`= ((1 + cos^4 theta)(1- cos^4 theta))/(cos^4 theta)`
= `(1 + cos^4 theta)(1- cos^4 theta) (1 + cos^2 theta)/cos^4 theta`
Thus the solution would be not coming equal to RHS.
The correct question would be sin4 θ in place of sec4θ.
On solving this question we get,
= (sin2θ)2 – (cos2θ)2
= (sin2θ + cos2θ) (sin2θ – cos2θ) ....[∵ a2 – b2 = (a + b)(a – b)]
= (1) (sin2θ – cos2θ) ....[∵ sin2θ + cos2θ = 1]
= sin2θ – cos2θ
= (1 - cos2θ) - cos2θ ....[∵ sin2θ = 1 - cos2θ]
= 1 - 2cos2θ = उजवी बाजू
∴ sin4 θ - cos4θ = 1 - 2 cos2θ
APPEARS IN
संबंधित प्रश्न
`(sin^2θ)/(cosθ) + cosθ = secθ`
cos2θ(1 + tan2θ) = 1
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
secθ + tanθ = `cosθ/(1 - sinθ)`
(sec θ + tan θ) (1 - sin θ) = cos θ
sec6x - tan6x = 1 + 3sec2x × tan2x
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
जर 3 sin θ = 4 cos θ, तर sec θ = ?
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.