Advertisements
Advertisements
प्रश्न
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
उत्तर
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")`
= `((cos "A")/(sin "A"))/(1 - (sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/(1 - (cos "A")/(sin "A"))`
= `((cos "A")/(sin "A"))/((cos "A" - sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/((sin "A" - cos "A")/(sin "A"))`
= `"cos A"/"sin A" xx "cos A"/(cos "A" - sin "A") + "sin A"/"cos A" xx "sin A"/(sin "A" - cos "A")`
= `(cos^2"A")/(sin "A"(cos "A" - sin "A")) + (sin^2"A")/(cos"A"(sin"A" - cos"A"))`
= `1/(sin "A" - cos "A") ((-cos^3"A" + sin^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")((sin^3"A" - cos^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")xx ((sin"A" - cos"A")(sin^2"A" + sin"A" cos"A" + cos^2"A"))/(sin"A" cos"A")` ......[∵ a3 – b3 = (a – b)(a2 + ab + b2)]
= `(sin^2"A" +sin"A" cos"A" + cos^2"A")/(sin"A" cos"A"` ......(i)
= `(1 + sin"A" cos"A")/(sin"A" cos"A")` .....[∵ sin2A + cos2A = 1]
= `1/(sin"A" cos"A") + (sin"A" cos"A")/(sin"A" cos"A")`
= cosec A sec A + 1 .....(ii)
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")`
= `(sin^2"A" + sin"A" cos"A" + cos^2"A")/(sin"A" cos"A")` ......[(i) वरून]
= `(sin^2"A")/(sin"A" cos"A") + "sin A cos A"/"sin A cos A" + (cos^2"A")/"sin A cos A"`
= `"sin A"/"cos A" + 1 + "cos A"/"sin A"`
= tan A + 1 + cot A ......(iii)
(ii) आणि (iii) वरून,
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")` = 1 + tan A + cot A = sec A . cosec A + 1
APPEARS IN
संबंधित प्रश्न
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
sec2θ + cosec2θ = sec2θ × cosec2θ
sec6x - tan6x = 1 + 3sec2x × tan2x
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.