मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

Cot A1-tanA+tan A1-cotA = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.

बेरीज

उत्तर

`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")`

= `((cos "A")/(sin "A"))/(1 - (sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/(1 - (cos "A")/(sin "A"))`

= `((cos "A")/(sin "A"))/((cos "A" -  sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/((sin "A" -  cos "A")/(sin "A"))`

= `"cos A"/"sin A" xx "cos A"/(cos "A" - sin "A") + "sin A"/"cos A" xx "sin A"/(sin "A" - cos "A")`

= `(cos^2"A")/(sin "A"(cos "A" - sin "A")) + (sin^2"A")/(cos"A"(sin"A" - cos"A"))`

= `1/(sin "A" - cos "A") ((-cos^3"A" + sin^3"A")/(sin"A" cos"A"))`

= `1/(sin"A" - cos"A")((sin^3"A" - cos^3"A")/(sin"A" cos"A"))`

= `1/(sin"A" - cos"A")xx ((sin"A" - cos"A")(sin^2"A" + sin"A" cos"A" + cos^2"A"))/(sin"A" cos"A")`  ......[∵ a3 – b3 = (a – b)(a2 + ab + b2)]

= `(sin^2"A" +sin"A" cos"A" + cos^2"A")/(sin"A" cos"A"`  ......(i)

= `(1 + sin"A" cos"A")/(sin"A" cos"A")`   .....[∵ sin2A + cos2A = 1]

= `1/(sin"A" cos"A") + (sin"A" cos"A")/(sin"A" cos"A")`

= cosec A sec A + 1  .....(ii)

`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")`

= `(sin^2"A" + sin"A" cos"A" + cos^2"A")/(sin"A" cos"A")`     ......[(i) वरून]

= `(sin^2"A")/(sin"A" cos"A") + "sin A cos A"/"sin A cos A" + (cos^2"A")/"sin A cos A"`

= `"sin A"/"cos A" + 1 + "cos A"/"sin A"`

= tan A + 1 + cot A    ......(iii)

(ii) आणि (iii) वरून,

`"cot  A"/(1 - tan "A") + "tan A"/(1 - cot "A")` = 1 + tan A + cot A = sec A . cosec A + 1

shaalaa.com
त्रिकोणमितीय नित्यसमानता
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: त्रिकोणमिती - Q ४)

APPEARS IN

संबंधित प्रश्‍न

जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.


tan4θ + tan2θ = sec4θ - sec2θ 


जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती: `square` = 1 + tan2θ    ......[त्रि. नित्य समीकरण]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.


sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

कृती: डावी बाजू = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= उजवी बाजू


जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती: sec2θ = 1 + `square`    ......[त्रि. नित्य समीकरण]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


`(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.


sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.


sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.


`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×