Advertisements
Advertisements
प्रश्न
tan4θ + tan2θ = sec4θ - sec2θ
उत्तर
डावी बाजू = tan4θ + tan2θ
= `tan^2θ(tan^2θ + 1)`
= tan2θ.sec2θ ....[∵ 1 + tan2θ = sec2θ]
= `(sec^2θ - 1)sec^2θ` .....[∵ `tan^2θ = sec^2θ - 1`]
= sec4θ - sec2θ
= उजवी बाजू
∴ tan4θ + tan2θ = sec4θ - sec2θ
APPEARS IN
संबंधित प्रश्न
sec4θ - cos4θ = 1 - 2cos2θ
sec4A(1 - sin4A) - 2tan2A = 1
sinθ × cosecθ = किती?
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.