Advertisements
Advertisements
Question
tan4θ + tan2θ = sec4θ - sec2θ
Solution
डावी बाजू = tan4θ + tan2θ
= `tan^2θ(tan^2θ + 1)`
= tan2θ.sec2θ ....[∵ 1 + tan2θ = sec2θ]
= `(sec^2θ - 1)sec^2θ` .....[∵ `tan^2θ = sec^2θ - 1`]
= sec4θ - sec2θ
= उजवी बाजू
∴ tan4θ + tan2θ = sec4θ - sec2θ
APPEARS IN
RELATED QUESTIONS
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
sinθ × cosecθ = किती?
sec2θ + cosec2θ = sec2θ × cosec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
(sec θ + tan θ) . (sec θ – tan θ) = ?
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
sin2θ + cos2θ ची किंमत काढा.
उकलः
Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` ...(पायथागोरसचे प्रमेय)
दोन्ही बाजूला AC2 ने भागून,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परंतु `"AB"/"AC" = square "आणि" "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`