Advertisements
Advertisements
Question
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
Solution
cos A = `(2sqrt("m"))/("m" + 1)` ......[दिलेले]
आपल्याला माहीत आहे, की
sin2A + cos2A = 1
∴ `sin^2"A" + ((2sqrt("m"))/("m" + 1))^2` = 1
∴ `sin^2"A" + (4"m")/("m" + 1)^2` = 1
∴ sin2A = `1 - (4"m")/("m" + 1)^2`
= `(("m" + 1)^2 - 4"m")/("m" + 1)^2`
= `("m"^2 + 2"m" + 1 - 4"m")/("m" + 1)^2` ......`[∵ (a + b)2 = a2 + 2ab + b2]`
= `("m"^2 - 2"m" + 1)/("m" + 1)^2`
∴ sin2A = `("m" - 1)^2/("m" + 1)^2` ......[∵ a2 – 2ab + b2 = (a – b)2]
∴ sin A = `("m" - 1)/("m" + 1)` .....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
आता, cosec A = `1/"sin A"`
= `1/(("m" - 1)/("m" + 1))`
∴ cosec A = `("m" + 1)/("m" - 1)`
APPEARS IN
RELATED QUESTIONS
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.