Advertisements
Advertisements
प्रश्न
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
उत्तर
cos A = `(2sqrt("m"))/("m" + 1)` ......[दिलेले]
आपल्याला माहीत आहे, की
sin2A + cos2A = 1
∴ `sin^2"A" + ((2sqrt("m"))/("m" + 1))^2` = 1
∴ `sin^2"A" + (4"m")/("m" + 1)^2` = 1
∴ sin2A = `1 - (4"m")/("m" + 1)^2`
= `(("m" + 1)^2 - 4"m")/("m" + 1)^2`
= `("m"^2 + 2"m" + 1 - 4"m")/("m" + 1)^2` ......`[∵ (a + b)2 = a2 + 2ab + b2]`
= `("m"^2 - 2"m" + 1)/("m" + 1)^2`
∴ sin2A = `("m" - 1)^2/("m" + 1)^2` ......[∵ a2 – 2ab + b2 = (a – b)2]
∴ sin A = `("m" - 1)/("m" + 1)` .....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
आता, cosec A = `1/"sin A"`
= `1/(("m" - 1)/("m" + 1))`
∴ cosec A = `("m" + 1)/("m" - 1)`
APPEARS IN
संबंधित प्रश्न
sinθ × cosecθ = किती?
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
(sec θ + tan θ) (1 - sin θ) = cos θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ