Advertisements
Advertisements
प्रश्न
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
उत्तर
cos A + cos2A = 1 ......[दिलेले]
∴ cos A = 1 – cos2A
∴ cos A = sin2A ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
∴ cos2A = sin4A .....[दोन्ही बाजूंचे वर्ग करून]
∴ 1 – sin2A = sin4A
∴ 1 = sin4A + sin2A
∴ sin2A + sin4A = 1
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
जर 1 – cos2θ = `1/4`, तर θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू