Advertisements
Advertisements
प्रश्न
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
उत्तर
डावी बाजू = `sec"A"/(tan "A" + cot "A")`
= `sec"A"/((sin"A")/(cos"A") + (cos"A")/(sin"A"))`
= `sec"A"/((sin^2"A" + cos^2"A")/(cos"A" sin"A"))`
= `sec"A"/(1/(cos"A" sin"A"))` ......[∵ sin2A + cos2A = 1]
= sec A cos A sin A
= `1/cos"A" xx cos "A" sin "A"`
= sin A
= उजवी बाजू
∴ `sec"A"/(tan "A" + cot "A")` = sin A
APPEARS IN
संबंधित प्रश्न
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू