Advertisements
Advertisements
प्रश्न
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.
उत्तर
डावी बाजू = `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")`
= `((1 +sin "B")^2 + cos^2"B")/(cos "B"(1 + sin "B"))`
= `(1 +2sin"B" + sin^2"B" + cos^2"B")/(cos"B"(1 + sin"B"))` ......[∵ (a + b)2 = a2 + 2ab + b2]
= `(1 + 2sin"B" + 1)/(cos"B"(1+ sin"B"))` .....[∵ sin2B + cos2B = 1]
= `(2 + 2sin"B")/(cos"B"(1 + sin"B"))`
= `(2(1 + sin"B"))/(cos"B"(1 + sin"B"))`
= `2/"cos B"`
= 2 sec B
= उजवी बाजू
∴ `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
APPEARS IN
संबंधित प्रश्न
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
(sec θ + tan θ) (1 - sin θ) = cos θ
tan4θ + tan2θ = sec4θ - sec2θ
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू