Advertisements
Advertisements
प्रश्न
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
उत्तर
डावी बाजू = (sin A + cos A) (cosec A – sec A)
= (sin A + cos A) `(1/sin A - 1/cos A)`
= (cos A + sin A) `((cosA - sinA)/(sinA cosA))`
= `(cos^2A - sin^2A)/(sinA cosA)` ...........[(a + b)(a - b) = a2 - b2]
= `(1 - sin^2A - sin^2A)/(sin A cosA)` .....`[(sin^2A + cos^2A = 1), (therefore1 - sin^2A = cos^2A)]`
= `(1 - 2sin^2A)/(sinA cosA)`
= `(1/(sinA cosA) - (2sin^2A)/(sinA cosA))`
= `1/sinA . 1/cosA - (2sinA)/cosA`
= cosec A. sec A – 2tan A
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
`(sin^2θ)/(cosθ) + cosθ = secθ`
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
secθ + tanθ = `cosθ/(1 - sinθ)`
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
sec4A(1 - sin4A) - 2tan2A = 1
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.