Advertisements
Advertisements
प्रश्न
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.
उत्तर
डावी बाजू = (1 – cos2A) . sec2B + tan2B(1 – sin2A)
= `sin^2"A"* 1/(cos^2"B") + (sin^2"B")/(cos^2"B") (1 - sin^2"A")` ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= `(sin^2"A")/(cos^2"B") + (sin^2"B")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B")`
= `(sin^2"A")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B") + (sin^2"B")/(cos^2"B")`
= `(sin^2"A")/(cos^2"B") (1 - sin^2"B") + tan^2"B"`
= `(sin^2"A")/(cos^2"B") (cos^2"B") + tan^2"B"`
= sin2A + tan2B
= उजवी बाजू
∴ (1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B
APPEARS IN
संबंधित प्रश्न
`(sin^2θ)/(cosθ) + cosθ = secθ`
sec4A(1 - sin4A) - 2tan2A = 1
sinθ × cosecθ = किती?
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
(sec θ + tan θ) . (sec θ – tan θ) = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
जर cos θ = `24/25`, तर sin θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.