Advertisements
Advertisements
Question
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
Solution
डावी बाजू = (sin A + cos A) (cosec A – sec A)
= (sin A + cos A) `(1/sin A - 1/cos A)`
= (cos A + sin A) `((cosA - sinA)/(sinA cosA))`
= `(cos^2A - sin^2A)/(sinA cosA)` ...........[(a + b)(a - b) = a2 - b2]
= `(1 - sin^2A - sin^2A)/(sin A cosA)` .....`[(sin^2A + cos^2A = 1), (therefore1 - sin^2A = cos^2A)]`
= `(1 - 2sin^2A)/(sinA cosA)`
= `(1/(sinA cosA) - (2sin^2A)/(sinA cosA))`
= `1/sinA . 1/cosA - (2sinA)/cosA`
= cosec A. sec A – 2tan A
= उजवी बाजू
APPEARS IN
RELATED QUESTIONS
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
sinθ × cosecθ = किती?
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
जर 1 – cos2θ = `1/4`, तर θ = ?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू