Advertisements
Advertisements
Question
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
Solution
डावी बाजू = sec2θ + cosec2θ
= `1/(cos^2theta) + 1/(sin^2theta)`
= `(sin^2theta + cos^2theta)/(cos^2theta*sin^2theta)`
= `1/(cos^2theta*sin^2theta)` ......[∵ sin2θ + cos2θ = 1]
= `1/(cos^2theta) xx 1/(sin^2theta)`
= sec2θ × cosec2θ
= उजवी बाजू
∴ sec2θ + cosec2θ = sec2θ × cosec2θ
APPEARS IN
RELATED QUESTIONS
cot2θ - tan2θ = cosec2θ - sec2θ
(sec θ + tan θ) . (sec θ – tan θ) = ?
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
जर cos θ = `24/25`, तर sin θ = ?
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.