Advertisements
Advertisements
Question
(sec θ + tan θ) . (sec θ – tan θ) = ?
Solution
(sec θ + tan θ)(sec θ – tan θ)
= sec2θ – tan2θ ......[(a + b)(a – b) = a2 – b2]
= 1 ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`
APPEARS IN
RELATED QUESTIONS
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ