Advertisements
Advertisements
Question
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
Solution
डावी बाजू = `underline(cos^2theta*(1 + tan^2theta))`
= `cos^2theta xx underline(sec^2theta)` .....`[1 + tan^2theta = underline(sec^2theta)]`
= `(cos theta xx underline(sectheta))^2`
= 12
= 1
= उजवी बाजू
APPEARS IN
RELATED QUESTIONS
`(sin^2θ)/(cosθ) + cosθ = secθ`
sinθ × cosecθ = किती?
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
(sec θ + tan θ) (1 - sin θ) = cos θ
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.