Advertisements
Advertisements
Question
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
Solution
डावी बाजू = tan2θ – sin2θ
= `underline(tan^2theta) (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 -(underline(sin^2theta))/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/underline(sin^2theta))`
= `tan^2theta (1 - underline(cos^2theta))`
= tan2θ × sin2θ .....[1 – cos2θ = sin2θ]
= उजवी बाजू
APPEARS IN
RELATED QUESTIONS
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
sec6x - tan6x = 1 + 3sec2x × tan2x
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
जर cos θ = `24/25`, तर sin θ = ?
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.