Advertisements
Advertisements
प्रश्न
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
उत्तर
डावी बाजू = tan2θ – sin2θ
= `underline(tan^2theta) (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 -(underline(sin^2theta))/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/underline(sin^2theta))`
= `tan^2theta (1 - underline(cos^2theta))`
= tan2θ × sin2θ .....[1 – cos2θ = sin2θ]
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
cos2θ(1 + tan2θ) = 1
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
जर 1 – cos2θ = `1/4`, तर θ = ?
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
जर 3 sin θ = 4 cos θ, तर sec θ = ?
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.