हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

Sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा. कृती: डावी बाजू = □ = (sin2A + cos2A) (□) = 1(□) .....[sin2A+□=1] = □ – cos2A .....[sin2A = 1 – cos2A] = □ = उजवी बाजू - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

कृती: डावी बाजू = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= उजवी बाजू

योग

उत्तर

डावी बाजू = sin4A – cos4A  

= (sin2A)2 – (cos2A)2

 = (sin2A + cos2A) (sin2A – cos2A)    .....[∵ a2 – b2 = (a + b)(a – b)] 

= 1(sin2A – cos2A)       .....[∵ sin2A + cos2A = 1]

= sin2A – cos2A

= 1 – cos2A – cos2A    .....[sin2A = 1 – cos2A]

= 1 – 2cos2A

= उजवी बाजू 

shaalaa.com
त्रिकोणमितीय नित्यसमानता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिकोणमिती - Q ३ अ)

APPEARS IN

एससीईआरटी महाराष्ट्र Geometry (Mathematics 2) [Marathi] 10 Standard SSC
अध्याय 6 त्रिकोणमिती
Q ३ अ) | Q १.
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×