Advertisements
Advertisements
प्रश्न
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
उत्तर
डावी बाजू = sin4A – cos4A
= (sin2A)2 – (cos2A)2
= (sin2A + cos2A) (sin2A – cos2A) .....[∵ a2 – b2 = (a + b)(a – b)]
= 1(sin2A – cos2A) .....[∵ sin2A + cos2A = 1]
= sin2A – cos2A
= 1 – cos2A – cos2A .....[sin2A = 1 – cos2A]
= 1 – 2cos2A
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
`1/(secθ - tanθ)` = secθ + tanθ
secθ + tanθ = `cosθ/(1 - sinθ)`
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
(sec θ + tan θ) (1 - sin θ) = cos θ
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
जर 1 – cos2θ = `1/4`, तर θ = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.