Advertisements
Advertisements
प्रश्न
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
उत्तर
डावी बाजू = tan2θ – sin2θ
= `underline(tan^2theta) (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 -(underline(sin^2theta))/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/underline(sin^2theta))`
= `tan^2theta (1 - underline(cos^2theta))`
= tan2θ × sin2θ .....[1 – cos2θ = sin2θ]
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
sec4A(1 - sin4A) - 2tan2A = 1
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
sec6x - tan6x = 1 + 3sec2x × tan2x
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
(sec θ + tan θ) . (sec θ – tan θ) = ?
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.