Advertisements
Advertisements
प्रश्न
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
उत्तर
sinθ = `11/61` ...[पक्ष]
आपल्याला माहीत आहे, की
sin2θ + cos2θ = 1
⇒ cos2θ = 1 − sin2θ
⇒ `cos^2θ = 1 - (11/61)^2`
⇒ `cos^2θ = 1 - 121/3721`
⇒ `cos^2θ = (3721 - 121)/3721`
⇒ `cos^2θ = 3600/3721`
⇒ `cosθ = sqrt((60/61)^2)` ...[दोन्ही बाजूंचे वर्गमूळ घेऊन]
⇒ cosθ = `60/61`
अशा प्रकारे, cosθ ची किंमत `60/61` आहे.
संबंधित प्रश्न
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1