Advertisements
Advertisements
प्रश्न
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
उत्तर
डावी बाजू = sin2A . tan A + cos2A . cot A + 2 sin A . cos A
= `sin^2"A"* (sin "A")/(cos "A") + cos^2"A"* (cos"A")/(sin"A") + 2sin"A" *cos"A"`
= `(sin^3"A")/"cosA" + (cos^3"A")/"sinA" + 2sin"A"*cos"A"`
= `(sin^4"A" + cos^4"A" + 2sin^2"A"cos^2"A")/(sin"A"cos"A")`
= `(sin^2"A" + cos^2"A")^2/(sin"A"cos"A")` .....[∵ a2 + b2 + 2ab = (a + b)2]
= `1^2/(sin"A"cos"A")` ......[∵ sin2A + cos2A = 1]
= `1/(sin"A"cos"A")`
= `(sin^2"A"+ cos^2"A")/(sin"A"cos"A")` ......[∵ 1 = sin2A + cos2A]
= `(sin^2"A")/(sin"A"cos"A") + (cos^2"A")/(sin"A"cos"A")`
= `"sinA"/"cosA" + "cosA"/"sinA"`
= tan A + cot A
= उजवी बाजू
∴ sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
APPEARS IN
संबंधित प्रश्न
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
sec4A(1 - sin4A) - 2tan2A = 1
sinθ × cosecθ = किती?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1