Advertisements
Advertisements
प्रश्न
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
उत्तर
डावी बाजू = `costheta/(1 + sintheta)`
= `costheta/(1 + sintheta) xx (1 - sintheta)/(1 - sintheta)` ......[छेदाचे परिमेयकरण करून]
= `(costheta(1 - sintheta))/(1 - sin^2theta)`
= `(costheta(1 - sintheta))/(cos^2theta)` ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 -sin^2theta = cos^2theta)]`
= `(1 - sintheta)/costheta`
= उजवी बाजू
∴ `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
APPEARS IN
संबंधित प्रश्न
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
sinθ × cosecθ = किती?
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
जर 1 – cos2θ = `1/4`, तर θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.