Advertisements
Advertisements
प्रश्न
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.
उत्तर
डावी बाजू = sin4A – cos4A
= (sin2A)2 – (cos2A)2
= (sin2A + cos2A)(sin2A – cos2A) .....[∵ a2 – b2 = (a + b)(a – b)]
= (1)(sin2A – cos2A) ......[∵ sin2A + cos2A = 1]
= sin2A – cos2A
= (1 – cos2A) – cos2A ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"" = sin^2"A")]`
= 1 – 2cos2A
= उजवी बाजू
∴ sin4A – cos4A = 1 – 2cos2A
APPEARS IN
संबंधित प्रश्न
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ