Advertisements
Advertisements
प्रश्न
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
उत्तर
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(bb(cos^2theta + sin^2theta))/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `bb([sin^2theta + cos^2theta = 1])`
= `1/sinθ xx 1/bbcostheta`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
APPEARS IN
संबंधित प्रश्न
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
sin2θ + cos2θ ची किंमत काढा.
उकलः
Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` ...(पायथागोरसचे प्रमेय)
दोन्ही बाजूला AC2 ने भागून,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परंतु `"AB"/"AC" = square "आणि" "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`