Advertisements
Advertisements
प्रश्न
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
उत्तर
tanθ = 2 .....…[दिलेले]
आपल्याला माहीत आहे, की
1 + tan2θ = sec2θ
∴ 1 + (2)2 = sec2θ
∴ 1 + 4 = sec2θ
∴ sec2θ = 5
∴ secθ = `sqrt5` ........[दोन्ही बाजूंचे वर्गमूळ घेऊन]
cosθ = `1/secθ = 1/sqrt5`
आपल्याला माहीत आहे, की sin2θ + cos2θ = 1
∴ sin2θ + `(1/sqrt5)^2 = 1`
∴ sin2θ + `1/5 = 1`
∴ sin2θ = 1 - `1/5`
∴ sin2θ = `(5 - 1)/5`
∴ sin2θ = `4/5`
∴ sinθ = `2/sqrt5` ....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
cosecθ = `1/sinθ = 1/(2/sqrt5) = sqrt5/2`
cotθ = `1/tanθ = 1/2`
∴ sinθ = `2/sqrt5`, cosθ = `1/sqrt5`, cotθ = `1/2`, secθ = `sqrt5`, cosecθ = `sqrt5/2`
APPEARS IN
संबंधित प्रश्न
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
cot2θ - tan2θ = cosec2θ - sec2θ
tan4θ + tan2θ = sec4θ - sec2θ
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.