Advertisements
Advertisements
प्रश्न
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
उत्तर
डावी बाजू = sec2θ − cos2θ
= 1 + tan2θ – cos2θ .......[∵ 1 + tan2θ = sec2θ]
= tan2θ + (1 – cos2θ)
= tan2θ + sin2θ ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= उजवी बाजू
∴ sec2θ − cos2θ = tan2θ + sin2θ
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
sec θ(1 - sin θ) (sec θ + tan θ) = 1
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ