Advertisements
Advertisements
प्रश्न
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
उत्तर
डावी बाजू = `(sin^2theta)/(cos theta) + cos theta`
= `(sin^2theta + cos^2theta)/costheta`
= `1/costheta` ......[∵ sin2θ + cos2θ = 1]
= sec θ
= उजवी बाजू
∴ `(sin^2theta)/(cos theta) + cos theta` = sec θ
APPEARS IN
संबंधित प्रश्न
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
sec4A(1 - sin4A) - 2tan2A = 1
(sec θ + tan θ) (1 - sin θ) = cos θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
जर 3 sin θ = 4 cos θ, तर sec θ = ?
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`