Advertisements
Advertisements
प्रश्न
sec4A(1 - sin4A) - 2tan2A = 1
उत्तर
डावी बाजू = sec4A(1 - sin4A) - 2tan2A
= sec4A[12 – (sin2A)2] – 2tan2A
= sec4A .(1 – sin2A) (1 + sin2A) – 2tan2A
= sec4A cos2A (1 + sin2A) – 2tan2A ...`[(∵ sin^2θ + cos^2θ = 1), (∴ 1 - sin^2θ = cos^2θ)]`
= `1/cos^4A . cos^2A(1 + sin^2A) - 2tan^2A`
= `1/cos^2A (1 + sin^2A) - 2tan^2A`
= `1/cos^2A + sin^2A/cos^2A - 2tan^2A`
= sec2A + tan2A – 2tan2A
= sec2A – tan2A
= 1 ................[∵ sec2θ – tan2θ = 1]
= उजवी बाजू
∴ sec4A(1 - sin4A) - 2tan2A = 1
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.