Advertisements
Advertisements
प्रश्न
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
उत्तर
डावी बाजू = `tanθ/(secθ - 1)`
= `tanθ/(secθ - 1) xx (secθ + 1)/(secθ + 1)` .......[छेदाचे परिमेयकरण करून]
= `(tanθ(secθ + 1))/(sec^2θ - 1)`
= `(tanθ(secθ + 1))/tan^2θ` .....`[(∵ 1 + tan^2θ = sec^2θ), (∴ sec^2θ - 1 = tan^2θ)]`
= `(secθ + 1)/tanθ`
∴ `tanθ/(secθ - 1) = (secθ + 1)/tanθ`
∴ समान गुणोत्तराच्या सिद्धांतानुसार,
`tanθ/(secθ - 1) = (secθ + 1)/tanθ`
= `(tanθ + (secθ + 1))/(secθ - 1 + (tanθ))`
= `(tanθ + secθ + 1)/(tanθ + secθ - 1)`
= उजवी बाजू
∴ `tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
`1/(secθ - tanθ)` = secθ + tanθ
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
`(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B हे सिद्ध करा.
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ