Advertisements
Advertisements
Question
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Solution
डावी बाजू = `tanθ/(secθ - 1)`
= `tanθ/(secθ - 1) xx (secθ + 1)/(secθ + 1)` .......[छेदाचे परिमेयकरण करून]
= `(tanθ(secθ + 1))/(sec^2θ - 1)`
= `(tanθ(secθ + 1))/tan^2θ` .....`[(∵ 1 + tan^2θ = sec^2θ), (∴ sec^2θ - 1 = tan^2θ)]`
= `(secθ + 1)/tanθ`
∴ `tanθ/(secθ - 1) = (secθ + 1)/tanθ`
∴ समान गुणोत्तराच्या सिद्धांतानुसार,
`tanθ/(secθ - 1) = (secθ + 1)/tanθ`
= `(tanθ + (secθ + 1))/(secθ - 1 + (tanθ))`
= `(tanθ + secθ + 1)/(tanθ + secθ - 1)`
= उजवी बाजू
∴ `tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
APPEARS IN
RELATED QUESTIONS
sec4A(1 - sin4A) - 2tan2A = 1
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
जर 1 – cos2θ = `1/4`, तर θ = ?
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
जर cos θ = `24/25`, तर sin θ = ?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
जर cos A + cos2A = 1, तर sin2A + sin4A = ?